- isoperimetric inequality
- мат.изопериметрическое неравенство
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Isoperimetric inequality — The isoperimetric inequality is a geometric inequality involving the square of the circumference of a closed curve in the plane and the area of a plane region it encloses, as well as its various generalizations. Isoperimetric literally means… … Wikipedia
Gaussian isoperimetric inequality — The Gaussian isoperimetric inequality, proved by Boris Tsirelson and Vladimir Sudakov and independently by Christer Borell, states that among all sets of given Gaussian measure in the n dimensional Euclidean space, half spaces have the minimal… … Wikipedia
Isoperimetric dimension — In mathematics, the isoperimetric dimension of a manifold is a notion of dimension that tries to capture how the large scale behavior of the manifold resembles that of a Euclidean space (unlike the topological dimension or the Hausdorff dimension … Wikipedia
Isoperimetric problem — In mathematics, isoperimetric problem may refer to:* The isoperimetric inequality between the length of a closed curve and the area of the region it encloses, as well as its generalizations. * Any of a class of extremal problems arising in… … Wikipedia
Minkowski's first inequality for convex bodies — In mathematics, Minkowski s first inequality for convex bodies is a geometrical result due to the German mathematician Hermann Minkowski. The inequality is closely related to the Brunn–Minkowski inequality and the isoperimetric inequality.… … Wikipedia
Pu's inequality — [ Roman Surface representing RP2 in R3] In differential geometry, Pu s inequality is an inequality proved by P. M. Pu for the systole of an arbitrary Riemannian metric on the real projective plane RP2.tatementA student of Charles Loewner s, P.M.… … Wikipedia
Bonnesen's inequality — is an inequality relating the length, the area, the radius of the incircle and the radius of the circumcircle of a Jordan curve. It is a strengthening of the classical isoperimetric inequality.More precisely, consider a planar simple closed curve … Wikipedia
Gromov's systolic inequality for essential manifolds — In Riemannian geometry, M. Gromov s systolic inequality for essential n manifolds M dates from 1983. It is a lower bound for the volume of an arbitrary metric on M, in terms of its homotopy 1 systole. The homotopy 1 systole is the least length of … Wikipedia
Wirtinger's inequality for functions — For other inequalities named after Wirtinger, see Wirtinger s inequality. In mathematics, historically Wirtinger s inequality for real functions was an inequality used in Fourier analysis. It was named after Wilhelm Wirtinger. It was used in 1904 … Wikipedia
Loomis-Whitney inequality — In mathematics, the Loomis Whitney inequality is a result in geometry, which in its simplest form, allows one to estimate the size of a d dimensional set by the sizes of its ( d ndash; 1) dimensional projections. The inequality has applications… … Wikipedia
Milman's reverse Brunn-Minkowski inequality — In mathematics, Milman s reverse Brunn Minkowski inequality is a result due to Vitali Milman that provides a reverse inequality to the famous Brunn Minkowski inequality for convex bodies in n dimensional Euclidean space R n . At first sight, such … Wikipedia